Y=-16t^2+24t+48

Simple and best practice solution for Y=-16t^2+24t+48 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-16t^2+24t+48 equation:



=-16Y^2+24Y+48
We move all terms to the left:
-(-16Y^2+24Y+48)=0
We get rid of parentheses
16Y^2-24Y-48=0
a = 16; b = -24; c = -48;
Δ = b2-4ac
Δ = -242-4·16·(-48)
Δ = 3648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3648}=\sqrt{64*57}=\sqrt{64}*\sqrt{57}=8\sqrt{57}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{57}}{2*16}=\frac{24-8\sqrt{57}}{32} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{57}}{2*16}=\frac{24+8\sqrt{57}}{32} $

See similar equations:

| 13+13b=7+6(1-7b) | | 9.89-2.8x=4.5x+0.5 | | 360=x+2x+5x+4x | | 13x-8+7x+4+3x=180 | | 14/n=2/9 | | 12+2x−20+2x=3x+1 | | 3·(4)+2·x−5·(4)+2·x=3·x+1 | | 14x+2=20x1.50 | | 8(3x-5)-4(2x+3=12 | | 7/15x+3/29=-1/5x-7/60 | | 3(4)+2x-5(4)+2x=3x+1 | | 3/j+21=74 | | G-27=2x45 | | 5x+18=2x+15 | | 3x+5x+5=-6x+4x+2 | | -14+5n=2n-7+2n | | 6x/5=150 | | 12x-131=189-3x | | 41x+4=-14x-40 | | 289=1/2*2x*x | | -1-4x=-2-3x | | 4.x=32 | | x^+4x=0 | | 1/2(6-10x)=-1/5(15x-10) | | 3x-5-6x+2=18 | | -8y-12=-8-3(y-11) | | -6-x/4=10 | | 2(x-5)-3x-1)=0 | | -6-2b=1-b | | -8w-5=-132 | | (1x-3)/2=6/8 | | 2(n+1)=n+7 |

Equations solver categories